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Abstract—Sampling a finite stream of filtered pulses violates
the bandlimited assumption of the Nyquist-Shannon sampling
theory. However, recent low rate sampling schemes have shown
that these sparse signals can be sampled with perfect recon-
struction at their rate of innovation. To reach this goal in
the presence of noise, an estimation procedure is needed to
estimate the time-delay and the amplitudes of each pulse. To
assess the quality of any unbiased estimator, it is standard to
use the Cramér-Rao Bound (CRB) which provides a lower
bound on the Mean Squared Error (MSE) of any unbiased
estimator. In this work, analytic expressions of the Cramér-
Rao Bound are proposed for an arbitrary number of filtered
pulses. Using orthogonality properties on the filtering kernels,
an approximate compact expression of the CRB is provided.
The choice of the kernel is discussed from the point of view of
the estimation accuracy.

I. INTRODUCTION

In classical Nyquist-Shannon sampling theory a bandlimited

signal can be perfectly reconstructed from its samples, at

or above the Nyquist rate. However, in realistic applications,

many signals of importance are non-bandlimited and thus the

Nyquist-Shannon sampling theory assumption is not met [1],

[2] . Finite streams of filtered pulses are an important class of

signals since they appear in many applications including bio-

imaging, radar, and spread-spectrum communication. Unfor-

tunately, such signals are not bandlimited but fortunately

they are sparse in the sense that only a small number of

parameters per unit of time are needed to fully describe

them. This is the key idea of the finite rate of innovation

(FRI) framework introduced in [3]. More precisely, a finite

stream of duration N samples of K filtered pulses can be

described by 2K parameters (a time-delay and an amplitude

per pulse) although it couldn’t be sampled using Nyquist-

Shannon’s sampling theory.

In realistic scenarios, the sampling scheme must take into

account noise perturbations in analog and digital domains.

Analog (resp. digital) noise corrupts the signal before (resp.

after) the uniform sampling [4]. To characterize the esti-

mation performance, it is standard to use the Cramér-Rao

Bound (CRB) which provides a lower bound on the Mean

Squared Error (MSE) of any unbiased estimator [5]. In [6],

the ”continuous” CRB is derived for analog noise. The effect

of digital noise on the recovery procedure was first analyzed

in [7]. In [8], [9], the CRB for deterministic parameters is
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derived but no analytic expression is proposed. In [4], [10],

the CRB with the same assumptions (i.e. for deterministic

parameters) is investigated in analytical form but only for

a single pulse leading to a rate of innovation of 2/N . In

[11], the authors give an expression of the Fisher information

matrix which still has to be numerically inverted.

In this work, we provide analytic expressions of the CRB

in the case of digital noise and for an arbitrary number of

pulses. We propose a simple approximation for the CRB

which allows to easily compare the performance of the pos-

sible filtering kernels. We show that the amplitude estimation

accuracy does not depend on the choice of the kernel, while

the time-delay estimation accuracy depends on the norm of

the first-order derivative of the kernel. We apply our results

to the Sinc, Gaussian [3] and Sum of Sincs [12] kernels.

II. FINITE STREAMS OF MULTIPLE FILTERED PULSES

Consider a continuous-time signal with a finite number of

weighted Diracs:

x(t) =
K−1∑

k=0

akδ(t− τk) (1)

where τ = [τ0, . . . , τK−1]
T and a = [a0, . . . , aK−1]

T are

the vectors of the unknown parameters called the time-

delays and the amplitudes for each pulse respectively. We

consider the problem of estimating the unknown parameters

θ = [τT aT ]T based on uniform sampling with a sampling

interval TS of a filtered/smoothed version of x(t) according

to

cn = 〈g(t− nTS), x(t)〉+ ǫn. (2)

The real inner product is defined as 〈g(t), x(t)〉 =
∫∞

−∞
g(t)x(t)dt and ǫn is a real discrete white Gaussian noise

process having mean zero and variance σ2 (see Fig. 1).

Fig. 1: Uniform sampling scheme corrupted by a digital noise

Considering an analysis duration of N samples, we have

c =
[
c0 . . . cN−1

]T
= µ+ e (3)



where

[µ]n =

K−1∑

k=0

akg(τk − nTS)

and e =
[
ǫ0 . . . ǫN−1

]T
. Given the measurements c and

the known filter g, it is possible to estimate the amplitude and

the time-delay of each component of the signal x(t) under

appropriate conditions on g(t). See [12] for details. Thus,

without noise, the signal x can be perfectly reconstructed

with only a small number of measurements [3], [7], [12].

In this paper we derive the CRB on the amplitude and

time-delay estimation of finite rate innovation signals in the

presence of digital noise.

III. DETERMINISTIC LOWER BOUND OF THE MSE

The Cramér-Rao Bound (CRB) is a lower bound on the MSE

for any unbiased estimator θ̂(c) of θ such as

MSE = E{||θ̂(c)− θ||2} ≥ CRB = Tr (C(θ)) (4)

where C(θ) is the inverse of the Fisher information matrix

of parameters θ and Tr() is the trace operator. Observe

that the mean of the observation µ = E(c) = GPTPa,

with P a permutation matrix, since PTP = I where G =
[
g0, . . . , gK−1

]
with gk = [g(τk) . . . g(τk − (N −1)TS)]

T

and a = [a0 . . . aK−1]
T . For deterministic amplitudes and

real Gaussian noise, the inverse of the Fisher information

matrix for permuted vector θ(p) = (I2 ⊗ P)θ (where ⊗
stands for the Kronecker product and I2 is the 2×2 identity

matrix), is given by [5]

C(θ(p)) = σ2

((
∂µ

∂θ(p)

)T
∂µ

∂θ(p)

)−1

(5)

= σ2(I2 ⊗P)
(
BTB

)−1
(I2 ⊗PT ) (6)

where B =
[

ĠD G
]

with D a diagonal matrix containing

the amplitudes a and Ġ =
[
ġ0, . . . , ġK−1

]
with ġk =

[ġ(τk) . . . ġ(τk−(N−1)TS)]
T where we note ġ(τk−nTS) =

∂g(τk−nTS)
∂τk

. Let ek be the vector having ”1” at the k-

th entry and zero otherwise. By choosing the permutation

matrix according to Pk = [ek e1 . . . ek−1 ek+1 . . . eK ]T and

using the inverse of the block-matrix BTB, we obtain after

straightforward calculus:

CRB(ak) = σ2
[(
PkG

TP⊥

Ġ
GPT

k

)−1
]

11
(7)

CRB(τk) =
1

SNRk

[(

PkĠ
TP⊥

GĠPT
k

)−1
]

11

(8)

in which SNRk = a2k/σ
2, P⊥

G
= I − PG = I −

G(GTG)−1GT is the orthogonal projector whose range is

〈G〉⊥ and P⊥

Ġ
= I − P

Ġ
= I − Ġ(ĠT Ġ)−1ĠT is the

orthogonal projector whose range is 〈Ġ〉⊥.

Let us denote Ġ(k) the matrix extracted from Ġ by

removing the k-th column. Using the inverse of a block-

matrix, we obtain
[(

PkĠ
TP⊥

GĠPT
k

)−1
]

11

=
1

∥
∥
∥P⊥

[Ġ(k)G]
ġk

∥
∥
∥

2 (9)

where P⊥

[Ġ(k)G]
is the orthogonal projector whose range is

〈[Ġ(k)G]〉⊥. Consequently, the deterministic CRB for the

k-th time-delay is given by

CRB(τk) =
1

SNRk

1
∥
∥
∥P⊥

[Ġ(k)G]
ġk

∥
∥
∥

2 . (10)

The above expression provides a nice geometrical interpre-

tation of the CRB. Indeed, consider the extended subspace

〈[Ġ G]〉. For the k-th pulse, remove vector ġk from this sub-

space to obtain a deflated subspace 〈[Ġ(k)G]〉 of dimension

2K − 1. The CRB is then proportional to the norm of the

projection of vector ġk onto the orthogonal complement of

this deflated subspace (a similar geometrical interpretation of

the CRB can be found in [13]).

In a similar way, to obtain the CRB for the amplitudes

denote G(k) the matrix extracted from G by removing the

k-th column. Using the inverse of a block-matrix, we obtain

[(
PkG

TP⊥

Ġ
GPT

k

)−1
]

11
=

1
∥
∥
∥P⊥

[G(k)Ġ]
gk

∥
∥
∥

2 (11)

Finally, the CRB for the k-th amplitude is

CRB(ak) =
σ2

∥
∥
∥P⊥

[G(k)Ġ]
gk

∥
∥
∥

2 (12)

where P⊥

[G(k)Ġ]
is the orthogonal projector whose range is

〈[G(k)Ġ]〉⊥. Finally

CRB = Tr (C(θ)) =

K−1∑

k=0

CRB(τk) +

K−1∑

k=0

CRB(ak) (13)

where the CRB for parameters τk and ak is given in

expressions (10) and (12). The derived CRB is given for

an arbitrary number of pulses and generalizes the derivation

given in [4], [8].

IV. APPROXIMATED CRB EXPRESSIONS

A. Sampling kernels

In this work, we study the sinc function, Gaussian [3] and

the sum of sincs (SoS) kernels [12] which is defined as

gsos(t) = rect

(
t

NTS

) p
∑

l=−p

ble
j2πlt
NTS (14)

where rect(t) denotes the rectangular function.

Equation (14) represents a class of kernels determined by

the parameters {bl}i∈[−p···p]. We will name ”SoS” the sum

of sincs filters where the bl’s form a rectangular window and

”SoS Hamming” the filter where the bl’s form a symmetric

Hamming window (See (26) in [12]). To derive the CRB we

need to express ġ(t) = ∂g(t)/∂t. Unfortunately, the first-

order derivate of the SoS kernel does not exist. To circumvent

this problem, we approximate rect(t) using the Generalized

Gaussian [14] function with a large shape parameter.



B. Orthogonality properties of the kernel and its first-order

derivative

Let us assume that the kernel g(t) and its first-order deriva-

tive ġ(t) verify the following properties:

GTG ≈ F (15)

ĠT Ġ ≈ E (16)

ĠTG = GT Ġ ≈ 0K (17)

where 0K is the K×K null matrix, [E]kk′ = γ(τk) = ‖ġk‖
2

for k = k′ and 0 otherwise and [F]kk′ = γ̃(τk) = ‖gk‖
2

for k = k′ and 0 otherwise. At an intuitive level, property

(15) is fulfilled for disjoint pulse supports. This means that

the time-delays are assumed to be not too closely spaced.

An interpretation of properties (16) and (17) seems hard to

provide in a general context because they are closely related

to the behavior of the first-order derivative of each kernel.

But these properties will be validated in section B.2) for the

considered kernels.

Let us denote

γk(τ1, . . . , τK) =
∥
∥
∥P

⊥

[Ġ(k)G]
ġk

∥
∥
∥

2

and

γ̃k(τ1, . . . , τK) =
∥
∥
∥P

⊥

[G(k)Ġ]
gk

∥
∥
∥

2

.

Using the above properties, we have

P⊥

[Ġ(k)G]
≈ IN − Ġ(k)E(k)−1Ġ(k)T −GF−1GT ,

P⊥

[G(k)Ġ]
≈ IN −G(k)F(k)−1G(k)T − ĠE−1ĠT

where E(k) and F(k) are the (K − 1) × (K − 1) matrices

extracted from E and F respectively by removing the k-th

column and row. Using the above properties, we have

P⊥

[Ġ(k)G]
ġk ≈ ġk − Ġ(k)E(k)−1 Ġ(k)T ġk

︸ ︷︷ ︸

=0

−GF(k)−1 GH ġk
︸ ︷︷ ︸

=0

≈ ġk,

P⊥

[G(k)Ġ]
gk ≈ gk −G(k)F(k)−1 G(k)Tgk

︸ ︷︷ ︸

=0

− ĠE−1 ĠTgk
︸ ︷︷ ︸

=0

≈ gk.

Therefore, the norms of the above terms can be approxi-

mated in the following manner:

γk(τ1, . . . , τK) ≈ γ(τk) = ‖ġk‖
2
, (18)

γ̃k(τ1, . . . , τK) ≈ γ̃(τk) = ‖gk‖
2
. (19)

1) CRB expressions:

Result 1. Given a kernel g(t) under conditions (15), (16)

and (17) , the CRB can be approximated by the following

expression:

CRB ≈

K−1∑

k=0

1

SNRk ‖ġk‖
2 + σ2

K−1∑

k=0

1

‖gk‖
2 . (20)
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Fig. 2: Ratio γ1(τ1, τ2)/γ(τ1) for normalized kernels.
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Fig. 3: Ratio γ̃1(τ1, τ2)/γ̃(τ1) for normalized kernels.

2) Validity of the orthogonality properties: To compare

the kernels, we fix a same bandwidth of B = 1/TS for all

the filters. The variance σ2
s = ln(2)/(πB)2 is chosen such

that the 3dB bandwidth of the Gaussian kernel is equal to B.

The bandwidth of the sum of sincs kernel is directly related

to the parameter p by p =
⌈
Bτ−1

2

⌉
.

We set N = 30 and TS = 1s and normalize the kernels

such that:

γ̃(τk) =

N
2∑

n=−N
2 +1

g(nTS)
2 = 1. (21)

In Fig. 2 and 3, we have drawn ratios γ1(τ1, τ2)/γ(τ1) and

γ̃1(τ1, τ2)/γ̃(τ1) for τ1 = 10TS and a varying τ2 = nTS .

Those ratios measure the relevance of the approximation,

a ratio of one meaning that the approximate CRB equals

the CRB. Both figures show that the ratio is always close

to one for a wide range of time-delay values. So, we

conclude that if the delays are spaced enough, the CRB of

multiple pulses reduces to the CRB for one pulse and the

orthogonality approximation can be made for all kernels (a

similar observation has been made in [15]).

C. Independence on the time delay

In this section, we show that γ(τk) and γ̃(τk) can be

approximated as functions independent of the time-delay τk.

To reach this goal, we derive the first-order derivative of



γ(τk) which is given by

∂γ(τ)

∂τ

∣
∣
∣
∣
τ=τk

=
N−1∑

n=0

f(τk − nTS)

where f(t) = 2ġ(t)g̈(t) in which g̈(t) is the derivative of

ġ(t) according to t.
We consider that the function f(t) has the following

properties:

i) f(t) is an odd function i.e. f(t) = −f(−t) (in particu-

lar, note that f(0) = 0),

ii) f(t) has a finite support of length (2NS + 1)TS i.e.

f(t) = 0 for |t| ≥ NSTS .

Considering τk = nkTS , we have

∂γ(τ)

∂τ

∣
∣
∣
∣
τ=nkTS

=

N−1∑

n=0

f((nk − n)TS)

= f(0) +

nk−1∑

n=0

f((nk − n)TS) +

N−1∑

nk+1

f((nk − n)TS)

Using property ii) and NS < nk < N−NS−1 and f(0) = 0,

the sum becomes

=

nk−1∑

n=nk−NS

f((nk − n)TS) +

nk+NS∑

n=nk+1

f((nk − n)TS)

=

NS∑

n=1

f(nTS) + f(−nTS)
︸ ︷︷ ︸

=0 using property i)

= 0.

Depending on the studied kernel, property ii) is only an

approximation, however the norm of the residual defined as

nk−NS−1∑

n=0

f((nk − n)TS)
2 +

N−1∑

n=NS+1

f((nk − n)TS)
2

is assumed to be negligible. As the derivative of γ(τk) is

approximately zero, we can conclude that γ(τk) depends

weakly on τk under the condition that τk is away enough

from the borders (i.e. NS < nk < N−NS−1). In this case,

we will denote γ(τk) = γkernel.
To illustrate our assumptions, we have plotted f(t) in Fig.

4. We can check the validity of properties i) and ii) for the

considered kernels.

The same methodology can be made concerning γ̃(τk) if

we consider a function f ′(t) = 2g(t)ġ(t) that shares the

same properties as f(t). Fig. 5 shows function f ′(t) and

confirms that the assumptions are verified. Therefore, for

time-delays away enough from the border, γ̃(τk) = γ̃kernel
does not depend on the time delay.

D. Expression of the approximate CRB

Under the above conditions, the CRB for the k-th parameters

can be written:

CRB(τk) ≈
1

γkernel SNRk

(22)

CRB(ak) ≈
σ2

γ̃kernel
=

a2k
γ̃kernel SNRk

(23)
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Fig. 4: f(t) for the considered kernels.
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Fig. 5: f ′(t) for all the considered kernels

where γkernel and γ̃kernel only depend on the kernel function

g(t).

Result 2. For normalized kernels (i.e. following (21)), the

CRB for the K amplitudes is linear in the noise variance,

i.e., CRB(ak) = Kσ2.

For the time-delay estimation, the larger the norm of the

derivative of the kernel, the better the performance.

Result 3. Given a kernel following the orthogonality prop-

erties (16), (17) and (15) and supposing that the time delays

are well spaced and away from the borders, the CRB can

then be approximated by

CRB ≈
Kσ2

γ̃kernel
+

1

γkernel

K−1∑

k=0

1

SNRk

, (24)

=

K−1∑

k=0

1

SNRk

(
1

γkernel
+

a2k
γ̃kernel

)

. (25)

V. NUMERICAL ILLUSTRATIONS

For all the simulations we use N = 100 samples and

TS = 1 and kernels presented in section IV-A. The sig-

nal x(t) is composed of 3 weighted Diracs with τ =
[20TS , 60TS , 85TS ]

T and a = [1, 2, 1]T . Fig. 6 plots the CRB

for the Gaussian, sinc and SoS filters with first a rectangular

window and second a hamming window. The abscissa shows

the global SNR (which is defined by SNR = a
T
G

T
Ga

σ2 ) in

dB. We first note that the CRB from (13) is exactly the same



5 10 15 20 25 30
−20

−10

0

10

20

30

40

Gaussian

Sinc

Sos

Sos Hamming

SNR in dB

C
R

B
 in

 d
B

Fig. 6: CRB with well-spaced time-delays for the different

kernels, the continuous line is the numerical CRB using (5),

the star corresponds to the CRB using expression (13) and

the square is obtained using (24)
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Fig. 7: CRB with closely spaced time-delays for the different

kernels, the continuous line is the numerical CRB using (5),

the star corresponds to the CRB using expression (13) and

the square is obtained using (24)

as the CRB computed by inverting directly the FIM. The

approximated CRB is very close to the numerical CRB which

confirms that the different approximations are valid even for

a large variety of kernels, and for a N relatively small.

The sinc kernel is the best kernel for a weighted Dirac

signal. The SoS kernel with a rectangular window being

an approximation of the sinc kernel has very close perfor-

mances. The Gaussian kernel has bad results compared to the

others for this type of input signal. This can be understood

since the derivative of the Gaussian has short support and

small amplitude, and therefore a small norm. The SoS kernel

is very interesting since its parameters can be optimized to

fit different type of signals. Choosing an appropriate window

gives the same performances as the optimal kernel for a

specific input signal (here the sinc kernel for a weighted

sum of diracs).

Fig. 7 plots the CRB for time-delays which do not meet

the orthogonality assumptions. We choose two closely spaced

time-delays: τ = [20TS , 22TS ]
T and a = [1, 1]T . In this

case we see on Fig. 2 and Fig. 3 that the ratios are between

0.8 and 0.98 depending on the kernels. Consequently, the

approximated CRB is no longer valid but remains close to

the CRB without the orthogonal approximations.

VI. CONCLUSION

In this work, we have proposed analytical expressions of

the Cramér-Rao Bound (CRB) of unknown time-delays and

amplitudes for finite streams of an arbitrary number of

filtered pulses. Our analytical expressions are sufficiently

general to encompass the important and difficult case of

multiple pulses. This is a major difference with the existing

contributions where only the single pulse case is derived in

closed-form. We obtain several new results: We show how

the CRB can be approximated by a very compact expression

by exploiting the orthogonal properties of the kernels. A first

interesting result is that for normalized kernels, the amplitude

estimation accuracy does not depend on the kernel. A second

result is that for the time-delays, the kernels with large first-

order derivative norm lead to the best performance in the

sense of the CRB.
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